

Ziptool Documentation

This tool is designed to analyze microdata from the American Community Survey
(ACS) on a ZIP-code level. In an effort to anonymize data, the Census Bureau
(perhaps surprisingly) publishes microdata only down to the PUMA (Public Use
Microdata Area) level, each of which contains 100,000 people.

However, researchers often want community data at the ZIP code level. Using
some geographical tricks, Ziptool allows users to obtain approximate data at
the ZIP code level by querying the PUMA(s) it is inside.

The primary function of interest is data_by_zip, which takes a dataset and ZIP
codes of interest and returns either summary statistics or the full data.
However, many subfunctions are also documented and can be used standalone.

Table of Contents

	 Getting Started
	Installation

	Obtaining Data

	Extracting ZIP-level Data

	 Background

	 Modules
	 query_by_zip

	 fetch_data

	 geo_conversion

	 interface

	 utils

	 Examples
	 Example 1: Introduction

	 Example 2: Cross-Correlations

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Installation

Ziptool requires Python >= 3.8.0. Install using pip:

pip install ziptool

Obtaining Data

Ziptool extracts information from ACS data. Data of the following forms can be
used:

	Downloaded, rectangular CSV that contains your variables of interest. You
can register at https://usa.ipums.org/ and download the data you would like.
You must be sure to download rectangular data and include PUMA and STATEFIP,
as variables, as the analysis relies on PUMA and state to convert to ZIP code.

	Alternatively, you could use ipumspy [https://ipumspy.readthedocs.io/en/latest/]!
This very convenient package allows you to generate a pd.DataFrame for whatever
data you would like and queries IPUMS directly using the API. This is the
preferred method for convenience’s sake, although both are equally supported.

Extracting ZIP-level Data

The top-level function used to extract data by ZIP code is data_by_zip.
Assuming that you have downloaded your data as a CSV, you might use the following
code to query data, assuming that you are interested in the education and
household income for the zip codes 79901 and 02835.

from ziptool import data_by_zip

data_by_zip(['02835','79901'], path_to_csv,
 {"HHINCOME": {"null": 9999999, "type":'household'},
 "EDUC": {"null": 0, "type": 'individual'}})

You can provide as many ZIP codes as you would like, and as many variables, too.
You must provide the null value for a variable and its type (household or
individual), both of which are readily available from the IPUMS codebook.

If you performed the following query on the 2019 ACS, it would return the
following DataFrame. You can easily pull out the statistics you would like.

	
	HHINCOME_mean

	HHINCOME_std

	HHINCOME_median

	EDUC_mean

	EDUC_std

	EDUC_median

	02835

	119943

	135844

	83000

	7.36114

	3.01399

	7

	79901

	46493.5

	57143.2

	30000

	5.51116

	2.90709

	6

The summary statistics for household income make sense! However, education is a
categorical variable, so the summary statistics might be less useful. In that
case, you might choose to provide no argument for variables to simply
return the raw pd.DataFrames that you could analyze as you wish.

from ziptool import data_by_zip

data_by_zip(['02835','79901'], path_to_csv, None)

Because no variables are specified, no analysis is performed – the function
simply returns the dataframes for each PUMA within the ZIP code and its ratio
(i.e. if some ZIP code 99999 is 75% within PUMA 1 and 25% within PUMA 2,
the code would return one pd.DataFrame per PUMA along with the ratio.) The above
code would return:

{'02835':
 YEAR SAMPLE SERIAL CBSERIAL HHWT CLUSTER STATEFIP ... GQ HHINCOME BEDROOMS PERNUM PERWT EDUC EDUCD
 2542312 2019 201901 1125822 2019010002705 77.0 2019011258221 44 ... 4 9999999 0 1 77.0 11 115
 2542335 2019 201901 1125845 2019010007698 45.0 2019011258451 44 ... 4 9999999 0 1 45.0 7 71

 2552708 2019 201901 1130856 2019001405444 44.0 2019011308561 44 ... 1 78910 5 2 35.0 11 115

 '79901':
 YEAR SAMPLE SERIAL CBSERIAL HHWT CLUSTER STATEFIP ... GQ HHINCOME BEDROOMS PERNUM PERWT EDUC EDUCD
 2681259 2019 201901 1189446 2019010001158 39.0 2019011894461 48 ... 3 9999999 0 1 39.0 2 23
 2681291 2019 201901 1189478 2019010001549 7.0 2019011894781 48 ... 3 9999999 0 1 7.0 6 63

 2952760 2019 201901 1302906 2019001405840 105.0 2019013029061 48 ... 1 11000 4 1 105.0 6 63

02835 and 79901 both exist exclusively inside one PUMA, so no ratios are provided
(since they are one). The pd.DataFrame for each ZIP code can easily be queried
from the return dictionary and used as any other pd.DataFrame for analysis of
your choice.

Why does this tool exist?

ZIP codes are ubiqitous in daily lives – mailing packages, verifying your ZIP
code when using your credit card, using Google Maps, and so on. So you would
think that the Census Bureau (which conducts, of course, the Census, but also
supplemental surveys like the American Community Survey, or ACS) would report
its data on a ZIP code basis. And to some degree, it does. You can
look up data [https://data.census.gov/cedsci/all?q=02906] for any ZIP code
you would like right on the Census Bureau’s website.

However, this published data is all aggregated. Sometimes, as researchers, we
want the microdata, which is the raw data collected from the ACS. However, by
federal law, the Census Bureau must take precautions [https://www.census.gov/about/policies/privacy/statistical_safeguards.html]
to avoid publishing potentially identifying information for 72 years after data
collection. So while they do helpfully publish microdata from the ACS, they
do not identify the ZIP code of the respondent. This is because some ZIP codes
are extremely small – 05141, for example, represents Cambridgeport, Vermont,
a town of only 112 people! And since the American Community Survey literally
collects every piece of demographic information you can imagine (ancestry, how
many cars you have, what kind of broadband you have, etc.) it wouldn’t be too
hard to figure out exactly the identity of a respondent.

The other reason the Census Bureau doesn’t publish data on a ZIP code basis is
that ZIP codes actually are not geographical areas – they represent mail routes.
They’ve sort of been retooled and misused for geographic areas, the same way
Social Security numbers have ended up being used as federal identifiers despite
that not at all being the intention. Because of this, ZIP codes aren’t quite as
geographically clean as we think they are. For example, some ZIP codes refer not
to locations but mail routes – 02912, for example, simply represents Brown
University’s central mail room from which mail is distributed across the
university by Brown itself and not the postal service. And some ZIP codes even
span multiple states, as shown below!

[image: _images/download-3.png]
For both of the above reasons, the Census Bureau publishes microdata not by
ZIP code, but by Public Use Microdata Areas, commonly known as PUMAs. These
are actual geographic regions that are designed to have 100,000 residents each,
which the Census Bureau deems large enough to main anonymity. That means that we
can obtain approximate microdata data for a ZIP code by querying its PUMA –
should be easy, right?

Well, not quite. As we discussed before, ZIP codes are not geographic areas, but
mail routes, so it’s not like there’s a one-to-one conversion between PUMA
and ZIP. Thankfully, the U.S. Department of Housing and Urban Development (HUD)
publishes the HUD-USPS ZIP Code Crosswalk [https://www.huduser.gov/portal/datasets/usps_crosswalk.html]
which allows us to convert ZIP codes to census tracts. This is good because we
now have actual geographical boundaries for a given ZIP code, but census tracts
are distinct from PUMAs and again are not 1:1 related. That means the final step
is computing the geographical intersection between census tracts and PUMA using
shape files provided by the Census Bureau. At this point, we can query approximate
data by ZIP code from the American Community Survey.

So, in summary, what does this tool actually do? It works through these messy
geographical conversions (ZIP -> census tract -> PUMA) to pull out approximate
data from the ACS on a ZIP code level, all without you having to think about
this geographical weirdness.

Modules

Table of Contents:

	 query_by_zip

	 fetch_data

	 geo_conversion

	 interface

	 utils

query_by_zip module

This module contains the primary functions of ziptool, query_by_zip.
You don’t need to use any other function to get data by ZIP code, but they
are documented regardless for special use cases.

	
ziptool.query_by_zip.data_by_zip(zips: List[str], acs_data, variables=None, year='2019')

	Extracts data from the ACS pertraining to a particular ZIP code.
Can either return the full raw data or summary statistics.

	Parameters

	
	zips – a list of zipcodes, represented as strings i.e. [‘02906’, ‘72901’, …]

	acs_data – a string representing the path of the datafile OR a dataframe containing ACS datafile

	variables (optional) – To return the raw data, pass None. To extract summary statistics, pass a dictionary of the form:

{
 variable_of_interest_1: { #the variable name in IPUMS
 "null": null_val, #the value (float or int) of null data
 "type": type #"household" or "individual"
 },
 variable_of_interest_2: {
 "null": null_val,
 "type": type
 }
}

	year (optional) – a string representing the year of shapefiles to use for matching PUMAs to ZIPs. Default is 2019.

	Returns

	When variables of interest are passed, a pd.DataFrame containing
the summary statistics foor each ZIP code.

When variables of interest are NOT passed, a dictionary of the form:

{
 zip_1: [
 [
 puma_1_df,
 puma_1_ratio
],
 [
 puma_2_df,
 puma_2_ratio
],
 ...,
],
 zip_2: ...
}

fetch_data module

This module contains helper functions used to obtain shape files required to
determine the intersections of Census tracts, PUMAs, and ZIP codes. Downloaded
data is stored in the computer’s temporary cache and should be deleted
automatically at termination.

	
ziptool.fetch_data.download_file(url: str, output_filename: Union[str, pathlib.Path], session: Optional[requests.sessions.Session] = None)

	Downloads a file from the provided URL and saves it at the desired path.

	Parameters

	
	url – a string representing the URL of the file you want to download

	output_filename – a FilenameType representing the desired download path

	Returns

	None

	
ziptool.fetch_data.get_shape_files(state_fips_code, year)

	For a given state (in particular its FIPS code), downloads its census tracts and
PUMA shapefiles from the Census Bureau. The functions skips the download if the
file already has been fetched!

	Parameters

	
	state_fips_code – string representing the state of interest

	year – string representing the year

	Returns

	Saves .shp files for both PUMA and census tracts within the data directory.

geo_conversion module

	
ziptool.geo_conversion.get_state_intersections(state_fips_code: str) → geopandas.geodataframe.GeoDataFrame

	For a given state, computes the intersections between Census tracts and PUMAs.
Note that you most run fetch_data.get_shape_files() before using this function.

	Parameters

	state_fips_code – a string representing the FIPS code of the state of interest.

	Returns

	a geopandas dataframe detailing the intersections of tracts and PUMAS for a state

	
ziptool.geo_conversion.tracts_to_puma(tracts, state_fips_code: str)

	Takes in a list of tracts and ratios for a given zip code (in a given state) and returns the PUMAs
composing the ZIP code with ratios (i.e. 88% in PUMA 00101 and 12% in PUMA 00102).

	Parameters

	
	tracts – a 2D list generated by zip_to_tract containing census tracts and weighted_ratios

	state_fips_code – string representing state of interest

	Returns

	series containing ratio of population for each PUMA

	
ziptool.geo_conversion.zip_to_tract(zipcode: Union[str, int]) → Tuple[Tuple[List[str], List[float]], str]

	For a given ZIP code, uses HUD Crosswalk data
(https://www.huduser.gov/portal/datasets/usps_crosswalk.html)
to find the ratio of persons in each census tract for the given ZIP code.

	Parameters

	zip – the five-digit ZIP code of interest, written as a string

	Returns

	List containing the same number of entries as census tracts within the ZIP code. Each entry is a list,
entry 0 is the census tract and entry 1 is the residential ratio of the census tract within that ZIP.

interface module

This module is how we connect the PUMAs and their ratios for a given ZIP code to
the ACS dataset. It is called for each ZIP code to return the summary statistics
or dataframe for that specific ZIP code.

	
ziptool.interface.get_acs_data(file: Union[str, pathlib.Path, pandas.core.frame.DataFrame], state_fips_code: Union[int, str], pumas: List[str], variables: Optional[Dict[str, str]] = None)

	Pulls ACS data from a given file and extracts the data pertraining to a
particular ZIP code. Can either return the full raw data or summary statistics.

	Parameters

	
	file – a path to a datafile OR a dataframe containing ACS datafile

	variables – To extract summary statistics, pass a dictionary of the form:

{
 variable_of_interest_1: {
 "null": null_val,
 "type": type
 },
 variable_of_interest_2: {
 "null": null_val,
 "type": type
 }...
}

variable_of_interest: the variable name you wish to summarize
null_val: the value, as a float or integer, of null values to filter out.
type: “household” or “individual”, depending on the variable type

To return the raw data, pass None.

	state_fips_code – an integer (or two-digit representation thereof)
representing the state of interest’s FIPS codes

	pumas – each PUMA of interest within the state and its ratio
(returned by geo_conversion.tracts_to_puma)

	Returns

	When variables of interest are passed, a pd.DataFrame containing
the summary statistics.

	When variables of interest are NOT passed, a dictionary of the form::
	{puma_1: [puma1_df, ratio1], puma_2: [puma2_df, ratio2]…}

utils module

Some simple utilities for handling data interaction.

	
ziptool.utils.cast_fips_code(state_fips_code: Union[str, int]) → str

	FIPS codes are technically two-digit strings representing a number between 0 and 99,
e.g., “01” and “44”. But it is very common that people pass them as integers.
This guarantees they always appear as two-digit strings.

	Parameters

	state_fips_code – A FIPS code as either a string or an int

	Returns

	The appropriately styled version of the code

	
ziptool.utils.cast_zipcode(zipcode: Union[str, int]) → str

	ZIP codes are five-digit strings, but it is very common that people pass them as
integers. This guarantees that they always appear as five-digit strings

	Parameters

	zipcode – A ZIP code

	Returns

	The appropriately styled version of the code

	
ziptool.utils.get_fips_code_from_abbr(state: str) → str

	Given a state postal abbreviation, e.g., “RI”, return its FIPS code, e.g., “44”

	Parameters

	state – The abbreviation of the state

	Returns

	The FIPS code of the state

Raises:

	
ziptool.utils.puma_shapefile_name(state_fips_code: Union[str, int]) → str

	Return the expected filename of the PUMA shapefile. Note that this assumes a 2019
filename.

	Parameters

	code – The FIPS code for the state of interest

	Returns

	The expected filename

	
ziptool.utils.tract_shapefile_name(state_fips_code: Union[str, int]) → str

	Return the expected filename of the tract shapefile. Note that this assumes a 2019
filename.

	Parameters

	code – The FIPS code for the state of interest

	Returns

	The expected filename

Examples

Table of Contents:

	 Example 1: Introduction
	Setup

	Option 1: Manually Pulling Data

	Option 2: Pulling Data with ipumspy

	Continuous Variables

	Categorical Variables

	 Example 2: Cross-Correlations
	Setup

	Fetching Data

	Analyzing The Data

Example 1

Ziptool can be used with downloaded CSV files of ACS data, but it works best
with ipumspy, a Python package that uses your IPUMS API key to pull data directly.
The example below details a sample use case of ziptool for basic demographic
research using ipumspy and both implementations of data_by_zip.

In this example, we want to explore various demographic traits of five coastal
New England towns throughout the region: Jamestown, RI (02835); Kennebunkport,
ME (04046); New Bedford, MA (02740); Stonington, CT (06355); and Westerly, RI
(02804). We are particularly interested in household income and ancestry.

Setup

First, import pandas, numpy, and some other important dependencies.

import pandas as pd
import numpy as np
from pathlib import Path

We give two options for pulling data. Using ipumspy is recommended as it is much
easier to use, but importing CSVs is fully supported as well.

Option 1: Manually Pulling Data

	Go to https://usa.ipums.org/usa/ and create a free account.

	Click the “Select Data” tab.

	Click “Select Samples” to select the year of ACS data you are interested in

(ziptool only supports one year at a time).

4. Under the “Select Harmonized Variables” dropdown, choose the variables you
would like. Be sure to add “PUMA” and “STATEFIP” under the Household ->
Geographic tab
5. Hit “View Cart” then select “Create Data Extract.” Select .csv as the data
format and rectangular under structure.
6. Hit submit extract and wait until it is finished so you can download!

Once you have the data downloaded, simply pass the path to the CSV as an argument
in data_by_zip. Ziptool will handle the import for you.

The rest of the tutorial will use the ipumspy option because of its ability
to import and parse the associated codebook, which we need in this example.

Option 2: Pulling Data with ipumspy

Import ipumspy and the modules we need explicitly.

import ipumspy
from ipumspy import IpumsApiClient, UsaExtract, readers, ddi

Then, using the API key, we request the variable we are interested in (‘HHINCOME’
and ‘ANCESTR1’) along with ‘PUMA’ and ‘STATEFIP’, both of which are required
variables for usage with ziptool. We also would like to get data from the 2019
ACS, which is labeled in ipums as ‘us2019a’. The request is then submitted and
downloaded (note that this can take quite a while depending on how many variables
you request.)

IPUMS_API_KEY = your_api_key
DOWNLOAD_DIR = Path(your_download_dir)

ipums = IpumsApiClient(IPUMS_API_KEY)

extract = UsaExtract(
 ["us2019a"],
 ["STATEFIP","PUMA","HHINCOME","ANCESTR1"],
)
ipums.submit_extract(extract)
ipums.wait_for_extract(extract)
ipums.download_extract(extract, download_dir=DOWNLOAD_DIR)

Continuous Variables

Now all the data needed for analysis is downloaded, and we can read it in as
a pd.DataFrame along with the codebook that contains the information associated
with each variable so that we can properly conduct our analysis.

ddi_file = list(DOWNLOAD_DIR.glob("*.xml"))[0]
ddi = ipumspy.readers.read_ipums_ddi(ddi_file)

ipums_df = ipumspy.readers.read_microdata(ddi,
 DOWNLOAD_DIR / ddi.file_description.filename)

In this example, we want to analyze two different traits for these communities:
mean household income and reported ancestry. The former is a numerical ratio
variable whereas the latter is categorical. That means that we can take advantage
of ziptool’s built-in analysis functions for HHINCOME but will read in the raw
data for the categorical data of ‘ANCESTR1’. We import the relevant modules of
ziptool, data_by_zip (which will calculate the ZIP-level data) and convert_to_df
(which will convert the returned data into a pd.DataFrame for easier analysis).
Because we only want to analyze HHINCOME using summary statisticcs, we pass
only ‘HHINCOME’ as a variable of interest. The null value comes from the
codebook, as does the type (household vs. individual variable).

from ziptool.query_by_zip import data_by_zip
from ziptool.utils import convert_to_df

income_data = data_by_zip(['02835','04046','02740','06355','02804'], ipums_df,
 {"HHINCOME": {"null": 9999999, "type":'household'}})

We now have a pd.DataFrame, income_data, that contains all of our data! We can easily generate
a bar plot to visualize differences by income as an example of the easy analysis
that we can now perform.

import matplotlib.pyplot as plt
ylgnbu = ['#7fcdbb', '#41b6c4', '#225ea8',
 '#0c2c84', '#f29c33', '#666462']
#defining our colorscale

plt.bar(income_df.index, income_df['HHINCOME_mean'], color = ylgnbu[3])
plt.title('Average Household Income')
plt.show()

[image: ../../_images/ex1_cont.png]

Categorical Variables

Categorical variables like ANCESTR1 are not usefully summarized by summary
statistics, so in this case, we can read in the raw data and perform our own
analysis. We do this by simply not specifying any variables:

raw_dfs = data_by_zip(['02835','04046','02740','06355','02804'], ipums_df)

We are particularly interested in four ancestral groups that often formed much
of the populations of some coastal New England towns in the late 1800s : people of
Portuguese, Irish, Italian, and English ancestry. However, countries are encoded
as numbers in ‘ANCESTR1’ fron the ACS, so we must access the codebook to pull
out the codes corresponding to the ancestries we are interested in.

ancestry_info = ddi.get_variable_info('ANCESTR1')
ancestry_codes = ancestry_info.codes
top_codes = [ancestry_codes['Portuguese'],
 ancestry_codes['Irish, various subheads,'],
 ancestry_codes['Italian'],
 ancestry_codes['English']]

We can now plot a pie chart of each ZIP code’s ancestry demographics:

fig, ax = plt.subplots(2,3)

for i,zip in enumerate(['02835','04046','02740','06355','02804']):
 row = int(np.floor(i/3))
 column = int(i % 3)
 data = raw_dfs[zip]
 ancestry_data= data.groupby('ANCESTR1').sum()['PERWT']
 other = pd.Series([ancestry_data.loc[~ancestry_data.index.isin(top_codes + [ancestry_codes['Not Reported']])].sum()],index=[0])
 to_plot = ancestry_data[top_codes].append(other)
 ax[row,column].pie(to_plot, colors = ylgnbu)
 ax[row,column].set_title(zip)

ax[1,2].axis('off')
fig.legend(['Portuguese','Irish','Italian','English','Other'], loc = 4)
plt.show()

[image: ../../_images/ex1_disc.png]
And just like that, we have analyzed our categorical variable! You can manipulate,
analyze, and visualize display data like you normally would with the ZIP-level
data in a standard pd.DataFrame!

Example 2

Here, we are interested in comparing the correlations between different household
variables for different variables. We will use ipumspy and ziptool to easily
extract this data and generate correlation matrices.

Setup

First, import pandas, ziptool, ipumspy and some plotting mechanisms.

import sys
from configuration import *
import pandas as pd
from pathlib import Path
import matplotlib.pyplot as plt
import seaborn as sns
import ipumspy
from ipumspy import IpumsApiClient, UsaExtract, readers, ddi

from ziptool.query_by_zip import data_by_zip

First, we pull our data using ipumspy.

Fetching Data

Using our API key, we request the variables we are interested in (a selection
of household dwelling and economic indicators) along with ‘PUMA’ and ‘STATEFIP’,
both of which are required variables for usage with ziptool. We also would like
to get data from the 2019 ACS, which is labeled in ipums as ‘us2019a’. The
request is then submitted and downloaded (note that this can take quite a while).

IPUMS_API_KEY = your_api_key
DOWNLOAD_DIR = Path(your_download_dir)

ipums = IpumsApiClient(IPUMS_API_KEY)

extract = UsaExtract(
 ["us2019a"],
 ["STATEFIP","PUMA","HHINCOME","ROOMS","BEDROOMS", \
 "CIHISPEED","FUELHEAT","VEHICLES","VALUEH"],
)
ipums.submit_extract(extract)
ipums.wait_for_extract(extract)
ipums.download_extract(extract, download_dir=DOWNLOAD_DIR)

Analyzing The Data

Now all the data needed for analysis is downloaded, and we can read it in as
a pd.DataFrame along with the codebook that contains the information associated
with each variable so that we can properly conduct our analysis.

ddi_file = list(DOWNLOAD_DIR.glob("*.xml"))[0]
ddi = ipumspy.readers.read_ipums_ddi(ddi_file)

ipums_df = ipumspy.readers.read_microdata(ddi,
 DOWNLOAD_DIR / ddi.file_description.filename)

First, we define the null values of each of our variables (obtained from the
IPUMS online codebook).

HHINCOME_null = 9999999
BEDROOMS_null = 0
ROOMS_null = 0
CHISPEED_null = 0
FUELHEAT_null = 0
VEHICLES_null = 0
VALUEH_null = 9999999

Then, we define a function called compare_variables which takes in a list of zip codes
and computes / plots the cross-correlation matrix between each variable of interest.
We first use ziptool’s data_by_zip function to return the raw dataframes for each
ZIP code (we do not want any intermediate analysis or summary statistics) and remove the
null values for each zip code; we then pre-process the CIHISPEED variable to transform
it from a categorical variable to a binary variable (i.e. does a household have
broadband access, not what kind). Then, we generate a heatmap and plot!

def compare_variables(zips):

 fig, axes = plt.subplots(1,len(zips), figsize = (12,4))

 df = data_by_zip(zips, ipums_df)

 for index, (zip, value) in enumerate(df.items()):

 mask = [value["BEDROOMS"] > BEDROOMS_null] and [value["ROOMS"] > ROOMS_null] and \
 [value["CIHISPEED"] > CHISPEED_null] and [value["FUELHEAT"] > FUELHEAT_null] and \
 [value["VEHICLES"] > VEHICLES_null] and [value["VALUEH"] != VALUEH_null] and \
 [value["HHINCOME"] != HHINCOME_null]

 filtered = value[mask[0]]

 oneperson = filtered[filtered['PERNUM'] == 1]
 oneperson['CIHISPEED'] = oneperson['CIHISPEED'].replace(20,0)
 oneperson['CIHISPEED'] = oneperson['CIHISPEED'].replace([10,11,12,13,14,15,16,17],1)

 sns.heatmap(oneperson[["HHINCOME","ROOMS","BEDROOMS","CIHISPEED","VEHICLES","VALUEH"]].multiply(oneperson['HHWT'],axis = 'index').corr(), cmap = 'YlGnBu', vmin = 0, vmax = 1, ax = axes[index])
 axes[index].set_title(zip)

 plt.tight_layout()

Now that the function is defined, we can simply call it for whichever variables
we are interested in.

compare_variables(['02835','10001','79901'])

[image: ../../_images/ex2heatmap.png]
Boom! We’ve used ziptool to extract ZIP-level data which we can use
to perform advanced geographical analyses for any variables we would like.

 Python Module Index

 z

 		 	

 		
 z	

 	[image: -]
 	
 ziptool	

 	
 	
 ziptool.fetch_data	

 	
 	
 ziptool.geo_conversion	

 	
 	
 ziptool.interface	

 	
 	
 ziptool.query_by_zip	

 	
 	
 ziptool.utils	

Index

 C
 | D
 | G
 | M
 | P
 | T
 | Z

C

 	
 	cast_fips_code() (in module ziptool.utils)

 	
 	cast_zipcode() (in module ziptool.utils)

D

 	
 	data_by_zip() (in module ziptool.query_by_zip)

 	
 	download_file() (in module ziptool.fetch_data)

G

 	
 	get_acs_data() (in module ziptool.interface)

 	get_fips_code_from_abbr() (in module ziptool.utils)

 	
 	get_shape_files() (in module ziptool.fetch_data)

 	get_state_intersections() (in module ziptool.geo_conversion)

M

 	
 	
 module

 	ziptool.fetch_data

 	ziptool.geo_conversion

 	ziptool.interface

 	ziptool.query_by_zip

 	ziptool.utils

P

 	
 	puma_shapefile_name() (in module ziptool.utils)

T

 	
 	tract_shapefile_name() (in module ziptool.utils)

 	
 	tracts_to_puma() (in module ziptool.geo_conversion)

Z

 	
 	zip_to_tract() (in module ziptool.geo_conversion)

 	
 ziptool.fetch_data

 	module

 	
 ziptool.geo_conversion

 	module

 	
 	
 ziptool.interface

 	module

 	
 ziptool.query_by_zip

 	module

 	
 ziptool.utils

 	module

 _static/plus.png

_static/file.png

_static/minus.png

_images/ex2heatmap.png
HHINCOME

Roows |

BEDROOMS |

QHISPEED

VEHICLES -

VALUEH -

02835

10

08

06

-oa

02

00

HHINCOME -
ROOMS -
BEDROOMS |
CHispEED -
VEHICLES |
ALUEH

HHINCOME

Roows |

BEDROOMS |

QHISPEED |

VEHICLES -

VALUEH -

10001
10

08

06

oa

02

-00

Roows |

VALUEH

HHINCOME -
BEDROOMS
QHISPEED

HHINCOME

Roows |

BEDROOMS |

QHISPEED

VEHICLES -

VALUEH -

HHINCOME -

ROOMS -

79901

BEDROOMS -

10

08

06

-oa

02

00

QHISPEED -
VEHICLES |

_images/ex1_cont.png
Average Household Income

120000 4

100000 4

80000 -

60000 -

40000 4

20000 A

02740

02804 02835 04046 06355

_images/ex1_disc.png
02835 04046

06355 02804

02740

Portuguese
Irish
Italian
English
Other

nav.xhtml

 Table of Contents

 		
 Ziptool Documentation

 		
 Getting Started

 		
 Installation

 		
 Obtaining Data

 		
 Extracting ZIP-level Data

 		
 Background

 		
 Modules

 		
 query_by_zip

 		
 fetch_data

 		
 geo_conversion

 		
 interface

 		
 utils

 		
 Examples

 		
 Example 1: Introduction

 		
 Setup

 		
 Option 1: Manually Pulling Data

 		
 Option 2: Pulling Data with ipumspy

 		
 Continuous Variables

 		
 Categorical Variables

 		
 Example 2: Cross-Correlations

 		
 Setup

 		
 Fetching Data

 		
 Analyzing The Data

_images/download-3.png
Multi-State ZIP Codes

